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Leveraging Social Networks to Combat Collusion in Reputation
Systems for Peer-to-Peer Networks
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Abstract—In peer-to-peer networks (P2Ps), many autonomous peers without preexisting trust relationships share resources with each
other. Due to their open environment, the P2Ps usually employ reputation systems to provide guidance in selecting trustworthy resource
providers for high reliability and security; however node collusion impairs the effectiveness of reputation systems in trustworthy node
selection. Although some reputation systems have certain mechanisms to counter collusion, the effectiveness of the mechanisms is
not sufficiently high. In this paper, we leverage social networks to enhance the capability of reputation systems in combating collusion.
We first analyzed real trace of the reputation system in the Overstock online auction platform which incorporates a social network.
The analysis reveals the impact of the social network on user purchasing and reputation rating patterns. We thus identified suspicious
collusion behavior patterns and propose a social network based mechanism, SocialTrust, to counter collusion. SocialTrust adaptively
adjusts the weight of ratings based on the social distance and interest relationship between peers. Experiment results show that
SocialTrust can significantly strengthen the capability of current reputation systems in combating collusion.

Index Terms—Peer to peer networks, Reputation systems, Collusion, Social networks.
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1 INTRODUCTION

The past decade has seen a rapid development of peer-
to-peer networks (P2Ps) along with a dramatic surge of
applications including file sharing (e.g., BitTorrent [1]),
video streaming (e.g., PPLive [2]), and computing re-
source sharing (e.g., MAAN [3]). In these P2P appli-
cations, peers (acquaintance and non-acquaintance) di-
rectly contact each other to conduct transactions on
resources (e.g., files, videos and etc.). Considering P2Ps’
open environment where many autonomous nodes share
resources, a critical problem is how a resource requester
can choose a resource provider that is trustworthy and
provides high-quality of service (QoS).

To deal with this problem, P2Ps usually employ rep-
utation systems for reliability and security. Like the
reputation systems in eBay [4], Amazon [5] and Over-
stock [6], a reputation system employed in P2Ps com-
putes and publishes global reputation value for each
node based on a collection of local ratings from other
users in order to provide guidance in selecting trust-
worthy nodes; however reputation systems are generally
vulnerable to node collusion [7], [8], which impairs
their effectiveness in trustworthy service selection. A
colluding collective is a group of malicious peers who
know each other, give each other high ratings, and give
all other peers low ratings in an attempt to subvert the
system and gain high global reputation values [9].

A number of reputation systems employ certain mech-
anisms to fight against collusion. Although the mech-
anisms can reduce the influence of collusion on rep-
utations to a certain extent, they are not sufficiently
effective in countering collusion, or they contradict the
P2Ps’ goal of global resource sharing. Some mechanisms
assign higher weights to ratings from pretrusted peers
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and (or) assign weights to ratings according to the raters’
global reputations [10]–[12]. However, colluders can rate
each other in a high frequency or compromise pretrusted
peers to quickly raise their reputations. In other mech-
anisms, a peer evaluates others’ trustworthiness based
on the experience [13]–[15] of itself or its friends [16].
However, these mechanisms limit the service options
and prevent strangers from freely conducting transac-
tions between each other.

Due to the soaring popularity of the online social
network (e.g., Facebook), more and more applications
(e.g. Overstock [6], Oneswarm [17]) incorporate online
social networks into their services to increase user
interactions. In this paper, we propose a mechanism
called SocialTrust that leverages social networks to
enhance the effectiveness of current mechanisms in
combating collusion in P2P networks. SocialTrust works
for a P2P network integrated with an online social
network (already exists or newly constructed) such as
the Maze file sharing system [7]. In a reputation system,
after a client’s resource/service request is resolved by a
server, the client rates the service quality of the server.
The reputation system collects all ratings of a node
and calculates its global reputation value, which is
used to guide subsequent server selection. SocialTrust
is built upon the reputation system of the P2P network
and re-scales node reputation values based on user
social information to mitigate the adverse influence of
collusion. To investigate the impact of a social network
on user purchasing and rating patterns and define the
suspicious behaviors in P2P network, we analyzed a
real trace of 450,000 transaction ratings during 2008-2010
that we crawled from Overstock Auctions (Overstock
in short) [6]. Overstock is an online auction platform
similar to eBay, but it distinguishes itself by integrating
a social network into the market community. We found
that social closeness and interest similarity impact user
purchasing and rating patterns. First, users tend to buy
products from high-reputed users or socially-close (3
hops or less) users. They also rate socially-close users
with high ratings. Second, 88% of a user’s purchases
is within 20% of the user’s product interest categories
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on average, and 60% of transactions are conducted
between users sharing >30% interest similarity.

The observations on the purchasing transactions in
Overstock can be directly mapped to resource trans-
actions in P2P applications, in which a peer selects a
server for a resource/service request. Based on our ob-
servations, we identified suspicious collusion behavior
patterns based on the distance and interest relationship
between peers in a social network. SocialTrust adjusts
the ratings of suspicious colluders according to the social
closeness and interest similarities of nodes in order to
reduce the impact of collusion. By preventing colluders
from gaining profits (e.g., reputations value) through
collusion, the colluders underlying business model will
be destroyed. Then nodes do not have incentives to
collude with each other.

This work is the first that leverages a social network to
identify suspicious collusion behavior patterns and re-
duce the influence of collusion on reputation systems. In
summary, this work makes the contributions below:
(1) We crawled and analyzed user transaction trace from
Overstock and found that buyer purchasing and rating
behaviors are greatly affected by the distance and in-
terest similarity of users in the social network and by
seller reputation. Accordingly, we identified a number
of suspicious collusion behavior patterns.
(2) We propose the SocialTrust mechanism to enhance a
reputation system’s capability in countering suspicious
collusion behaviors learned from the trace data. Social-
Trust adjusts the ratings from suspected colluders based
on rater-ratee social closeness and interest similarity.
(3) We conducted extensive experiments to evaluate So-
cialTrust’s effectiveness in handling different types of
collusions. The experimental results show that current
reputation systems are not sufficiently effective in deal-
ing with collusion, and SocialTrust can significantly en-
hance their capability to effectively counter collusion.

The remainder of this paper is as follow. Section 2
introduces related works in reputation systems and in
collusion deterrence. Section 3 presents our investigation
on the real trace. Section 4 describes SocialTrust in
detail. Section 5 presents the performance evaluation of
SocialTrust. Section 6 concludes the paper with remarks
on our future work.
2 RELATED WORK
Reputation systems In recent years, many reputa-
tion systems [10], [12], [18]–[27] have been proposed.
PeerTrust [18] computes peer reputation scores based on
three basic trust parameters and two adaptive factors.
Trustme [19] offers an approach toward anonymous trust
management, which can provide mutual anonymity for
both the trust host and the trust querying peer. Eigen-
Trust [10] and PowerTrust [20] depend on the distributed
hash tables to collect reputation ratings and calculate
the global reputation value of each peer. TrustGuard [12]
incorporates historical reputations and behavioral fluc-
tuations of nodes into the estimation of their trustworthi-
ness. FuzzyTrust [21] uses fuzzy logic inferences to better
handle uncertainty, fuzziness, and incomplete informa-
tion in peer trust reports. GossipTrust [22] enables peers
to share weighted local trust scores with randomly se-
lected neighbors until reaching global consensus on peer
reputations. Scrubber [23] fights polluted file content

by rating both the file provider and file. Credence [24]
gives users a robust estimate of file authenticity (the
degree to which an object’s content matches its ad-
vertised description). Fabrizio et al. [25] proposed an
approach to P2P security that enables each client to
compute a personalized, rather than global, performance
score for peers, and also distinguish peer performance
from peer credibility. Both XRep [26] and X2Rep [27]
extend the work in [25] by additionally computing object
reputations based on weighted peer voting.

Collusion deterrence Recently, a number of research
works have been conducted on the problem of collusion
in reputation systems. EigenTrust [10] breaks collusion
collectives by assigning higher weight to the feedback of
pretrusted peers. Moreton et al. [28] proposed the Stamp
algorithm, where peers issue stamps as virtual currency
for each interaction, and the value of each peer’s stamps
is maintained by exchange rates that act as reputation
values. TrustGuard [12] gives more weight to the feed-
backs from similar ratings, acting as an effective defense
against potential collusive nodes that only give good
ratings within the clique and give bad rating to everyone
else. Qiao et al. [7] analyzed the traffic logs in a P2P
file sharing system to study different types of collusion
patterns. Mao et al. [11] introduced using social networks
in the Maze P2P file sharing system to reduce the impact
of collusion. The authors assumed that the pretrusted
peers only trust their friends, and proved that the friend
network of the pretrusted peers can help to detect col-
luders. The works in [13]–[15] let a peer evaluate others’
trustworthiness based on its experience. Sorcery [16] lets
clients utilize the overlapping voting histories of both
their friends and the content providers to judge whether
a content provider is a colluder. However, the social
network based method limits the service options and
constrains resource sharing to only between friends. It
also cannot provide a global reputation of each node
calculated by ratings from a variety of users to accu-
rately reflect its trustworthiness. Our proposed method
is the first that leverages social distance and interest
relationship from a social network to identify suspicious
collusion and to reduce its influence on node reputation.

Sybil attack deterrence Collusion shares similarity to
Sybil attacks in the sense of forming a collective to gain
fraudulent benefits. Thus, we also include a number of
social network based works on Sybil attacks as related
works. Since malicious users can create many identities
but few trust relationships, there is a disproportionately-
small “cut” in the graph between the Sybil nodes and
the honest nodes. SybilGuard [29] exploits this property
to bound the number of identities a malicious user can
create. SybilLimit [30] improves SybilGuard by lever-
aging multiple independent instances of the random
route protocol to perform many short random routes
and exploiting intersections on edges instead of nodes.
SybilInfer [31] builds a probabilistic model of honest
social networks and a Bayesian inference engine that
returns potential regions of dishonest nodes. SumUp [32]
prevents Sybil attack by comparing the social structure
of colluders with that of non-colluders. Viswanath and
Post [33] compared the existing designs of the Sybil
defense schemes and showed that some community
detection algorithms can defend against Sybil attacks.
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Fig. 1: Effect of reputation on transaction.

They also demonstrated that a well-defined community
structure is inherently more vulnerable to Sybil attacks.
Lesniewski-Laas et al. [34], [35] proposed a Sybil-resilient
distributed hash table routing protocol to reduce the
probability of routing collusion. These schemes can be
used to complement SocialTrust to strengthen its capa-
bility to detect collusion behaviors.

3 ANALYSIS OF REAL TRACE IN OVERSTOCK

In order to study the relationship between a user so-
cial network, transaction, and reputation system, we
analyzed our crawled data of 450,000 transactions be-
tween over 200,000 users from Sep. 1, 2008 to Sep. 1,
2010 in Overstock. Overstock is an online e-commerce
website that provides an online auction platform to a
large community of users worldwide to conduct P2P e-
commerce. A buyer and a seller on Overstock rate each
other after a transaction, and the ratings are aggregated
to form a user’s global reputation. The range of ratings in
Overstock is [-2,+2]. Each user has a “personal network”
and a “business network.” The “personal network” is
a social network that is comprised of users connected
by friendship links. If a user accepts the friend invita-
tion from another user, a friendship link is established
between the two users in the social network. A user
can list hobbies and interests, post photos, and publish
friend and business contact lists in his/her personal
page in the personal network. The “business network”
records the user’s business contact list. Every time after
a user completes a transaction, (s)he adds the transaction
partner into his/her business network.

To crawl the data, we first selected a user in the
Overstock as a seed node, and then used the breadth
first search method to search through each node in the
friend list in the personal network and business contact
list in the business network. Based on the trace data, we
try to identify suspicious collusion behavior patterns
based on two main characteristics of collusion described
in [7], [10]. First, colluders are normally socially-close
nodes. Second, colluders frequently rate each other with
high values in order to boost the reputation values of
each other and (or) give others low values in order to
suppress their reputation values and gain benefits.

3.1 Relationship between reputation, social network
and transaction
Since users usually refer to sellers’ reputations for seller
selection, we first investigated the relationship between
a user’s reputation and the number of users in the
user’s business network. Figure 1(a) shows that there
is a linear relationship between the reputation value of
a user and the size of the user’s business network. The

strength of the linear association between two variables,
x and y, can be quantified by the correlation coefficient,
C = s2xy/sxxsyy, where sxy =

∑
(xi− x̄)(yi− ȳ), sxx =

∑
(xi− x̄)2

and syy =
∑

(yi − ȳ)2. The correlation coefficient between
the reputation value and business network size is 0.996.
Since users prefer to buy products from trustworthy
users, sellers with higher reputations are more likely
to attract more buyers, hence have larger business net-
works. This is confirmed by Figure 1(b), which shows
the number of transactions a user has received is pro-
portional to his/her reputation. This means that users
with higher reputations attract more transactions. This
is also the motivation of colluders to conspire together
to boost the reputation of each other. Thus, we make an
observation (O) from the results:
O1: Users with higher reputation values are more likely
to attract more buyers, and users seldom buy products
from low-reputed sellers.
We then derive an inference (I) from O1.
I1: A buyer is unlikely to frequently rate a low-reputed
user with high or low ratings, since (s)he is unlikely to
repeatedly choose a seller with low QoS.

Figure 2 shows the number of users in the personal
network of each user versus her/his reputation value.
We can see that there is a very weak linear relationship
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Fig. 2: Social network size vs.
reputation (C=0.092)

between personal network
size and reputation value.
Their correlation coefficient
is only 0.092. The linear
relationship may be caused
by the reason that a high-
reputed user knows many
users from his/her large
business network, who
may become the user’s
friends. The weak linear relationship implies that a
low-reputed user may have the same personal network
size as a high-reputed user.
O2: A low-reputed user may have a large number of
friends in his/her social network.
I2: A low-reputed user may have many socially-close
friends that (s)he can collude with in order to increase
his/her reputation.

3.2 Impact of social closeness
Social distance between two nodes is the number of
hops in the shortest path between them in the personal
network, which represents the social closeness between
the two users. If two users are directly connected in
the personal network, their social distance is 1. Next,
we investigate the impact of social distance on user
purchasing and reputation rating behavior.

Figures 3(a) and (b) show the average rating values
and average number of ratings from buyers to sellers
with different social distances in hops ≤ 4, respectively.
We see that as the social distance between people
increases, the average rating values and average
number of ratings decrease.
O3: Most transactions with high ratings occur between
users within 3 hops.
Thus, we identify a suspicious behavior (B) of collusion:
B1: Users with long social distances rate each other
with high ratings and high frequency.
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Fig. 3: Impact of social distance on reputation and transaction.

O4: Users with shorter social distances are more likely
to rate each other with higher ratings and higher
frequency.
From I1, I2 and O4, we retrieve:
B2: A user frequently rates a low-reputed socially-close
user with high ratings.

3.3 Impact of social interest similarity

Next, we investigate the impact of user interest on user
purchasing patterns. We classified the products bought
or sold by the users into categories such as Electronics,
Computers, and Clothing. We then generated an interest
set V=<v1, v2, v3, ..., vk> for each user, where v denotes
a product category. We ranked the categories that each
buyer has purchased from in descending order of the
number of the products (s)he has purchased in each
category. We define the percent of a category rank as the
ratio of the average number of products in the category
rank per user over the average number of all products
bought per user. Figure 4(a) plots the Cumulative Dis-
tribution Function (CDF) of the percent of each category
rank. The figure shows that the number of products
in different category ranks conforms to a power law
distribution. It also shows that the top 3 categories of
products constitute about 88% of the total number of
products a user bought. Thus,
O5: A user mostly buys products in a few categories
(≤3) in which (s)he is interested.
It was indicated that normal nodes primarily request
items in their interests [36]. Our above analytical results
are consistent with this finding. We calculated the inter-
est similarity between each pair of buyer ni and seller
nj by |Vi ∩ Vj |

min(|Vi|, |Vj |)
. (1)

Figure 4(b) depicts the CDF of the average number of
transactions versus interest similarity. We see only 10%
of transactions are conducted between users with ≤20%
interest similarity, 60% of transactions are conducted
between users with >30% interest similarity, and more
transactions occur between users with interest similarity
higher than 50%.
O6: A buyer seldom buys products from sellers with low
interest similarity.
B3: Users with few common-interests rate each other
with high ratings and high frequency.

Based on O1, I1 and O6, we know that a seller may try
to suppress the reputation of his/her competitors who
sell similar products by frequently rating them with low
ratings. Thus, we identify another suspicious behavior:
B4: A buyer frequently rates a seller with many
common-interests with low ratings.
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Fig. 4: Impact of interests on purchasing patterns.

4 SOCIALTRUST: SOCIAL NETWORK BASED
MECHANISM TO COMBAT COLLUSION

SocialTrust can be used in any reputation system for P2P
networks to enhance its capacity to combat collusion.
As most reputation systems for P2P networks [10],
[12], [18]–[27], we assume that most of the users in
the network are rational and legitimate nodes. If a P2P
network already has a social network like Overstock and
the Maze file sharing system [7], SocialTrust can directly
use the social network. Otherwise, SocialTrust provides
a plugin for the social network construction. It requires
users to enter their interest information and establish
friend relationships as in other reputation systems [11],
[16], [29]. Like current online social networks (e.g.,
Overstock and Facebook), SocialTrust maintains a
record of interactions among users on the personal
network. It processes both the interest information and
interaction information for combating collusion.

SocialTrust derives the social closeness (from the social
relationship and node interaction) and interest similarity
(from node profiles or activities) between a pair of nodes.
We use Ωc and Ωs to respectively denote these two
coefficients. SocialTrust detects action patterns of suspi-
cious collusion behaviors and then reduces the weight
of the ratings from suspected colluders based on the
two coefficients. Note that some non-colluders’ behav-
iors might be coincident with our identified suspicious
behavior patterns. However, such cases are rare since the
suspicious behaviors are abnormal as shown in Section 3.
Since collusion from malicious nodes greatly impairs the
system performance, the benefits from reducing collu-
sion’s influence should outweigh the effect of a marginal
amount of possible false positives in SocialTrust.

4.1 Social closeness based collusion deterrence
Social network studies [37], [38] indicate that the number
of social relationships and interaction frequency deter-
mine the social closeness of a pair of adjacent nodes,
ni and nj . The social relationships (e.g., colleague and
classmate) between a pair of nodes are always indicated
in a social network, and their interaction frequency
means their online contact frequency. In a P2P network
incorporated with a social network, an interaction can
be regarded as an action that a peer requests a re-
source from another peer. More relationships between
two nodes mean a closer relationship between them.
Also, if ni interacts with nj more frequently than with
other friends, it means that ni is socially-closer to nj .
Rather than using the complex supervised learning algo-
rithms [37], [38] for social closeness modeling, which is
computationally expensive especially in a large-scale dis-
tributed P2P system with dynamic interaction frequency
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and social relationship information updates, SocialTrust
introduces a lightweight social closeness model.

In SocialTrust, considering the two factors, the social
closeness Ωc(i,j) between two adjacent nodes ni and nj

is calculated by
Ωc(i,j) =

m(i,j)f(i,j)
∑|Si|

k=0 f(i,k)
, (2)

where m(i,j)≥1 denotes the number of social rela-
tionships between ni and nj , f(i,j) denotes the social
interaction frequency from ni to nj , and Si denotes a set
of neighbors of node i, where |Si| denotes the number
of nodes in Si.

Intuitively, for a pair of non-adjacent nodes that rate
each other but have no direct social relationship, fewer
hops in the shortest path between the two nodes in
the social network graph means a closer relationship.
Since each node establishes its own friend-relationship
network, broadcasting can be used to find the shortest
paths. However, broadcasting generates a large amount
of overhead. Binzel et al. [39] indicates that a reduction
in social distance between two people significantly in-
creases the trust between them. Also, the trace data from
Overstock shows that users normally do business with
others within 3 hops in their personal networks, which
is consistent with the observation in [40] that the users
possessing a social network primarily transact with 2
to 3 hop partners. Therefore, the friend-of-friend (FOF)
relationship [41] is sufficiently accurate to capture the
indirect social closeness between two nodes. Meanwhile,
if two nodes have more common friends, they are more
likely to have a close social relationship based on the
homophily feature in social science [42]. Therefore, using
Si and Sj to respectively denote the set of friends of
two non-adjacent nodes, ni and nj , the social closeness
between two non-adjacent nodes ni and nj is:

Ωc(i,j) =
∑

k∈|Si∩Sj |

Ωc(i,k)
+Ωc(k,j)

2
(3)

That is, we find all the common friend nk between
node ni and nj . The social closeness between ni and nj

through nk is calculated by averaging the closeness of
Ω(i,k) and Ω(k,j) if the common friends exsit. Otherwise,
the closeness value is the minimum social closeness
value of neighbor nodes in the social paths between ni

and nj [43]. In summary:

Ωc(i,j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

m(i,j)·f(i,j)
∑|Si|

k=0
f(i,k)

adjacent nodes,

∑
k∈|Si∩Sj |

Ωc(i,k)
+Ωc(k,j)

2
non-adjacent nodes, k �= ∅

min
1≤i≤n

Ωc(ki,ki+1)
non-adjacent nodes, k = ∅,

(4)
where node ki is in the path between ni and nj .

Suppose F̄ is the average rating frequency from one
node to another node in the system, SocialTrust uses
θF̄ (θ > 1) as the threshold to determine whether the
rating frequency is high, where θ is a scaling parameter.
For example, in Overstock, F̄ = 2.2/month. According
to B3 and B4 described in Section 3, when ni rates nj

with high ratings and high frequency, if Ωc(i,j) is very
low or very high and nj ’s reputation is low, it means ni

is potentially a colluder. Then, SocialTrust reduces the
weight of the ratings from ni to nj based on Ωc(i,j) . For

this purpose, SocialTrust relies on Gaussian function as
a reputation filter.

As shown in Figure 5, the Gaussian function has
a characteristic symmetric “bell curve” shape that can
mitigate or filter the effect of a factor with values greatly
deviated from the normal value. That is,

f(x) = ae−
(x−b)2

2c2 , (5)
where parameter a is the height of the curve’s peak, b
is the position of the centre of the peak, and c controls
the width of the “bell”. SocialTrust uses the Gaussian
function to adjust the ratings from ni to nj , denoted by
r(i,j).

r(i,j) = r(i,j) · α · e−
(Ωc(i,j)

−Ω̄ci
)2

2|maxΩci
−minΩci

|2 , (6)
where α is the function parameter. maxΩci , minΩci ,

and Ω̄ci respectively denote the maximum, minimum,
and average social closenesses of ni to the nodes that
ni has rated.

We set α = a to adjust the weight of ratings, b = Ω̄ci ,
which is the most reasonable social closeness of ni to
other nodes it has rated, and c = |maxΩci − minΩci |,
which is the greatest variance of social closeness of ni to
other nodes it has rated. The exponent in Equation (6) is
the deviation of Ωc(i,j) from the normal social closeness
of ni to other nodes it has rated. We also can replace Ωci
with the average Ωc of a pair of transaction peers in the
system based on the empirical result.

As Figure 5 shows, the Gaussian function can sig-
nificantly reduce the weights of the ratings from the
nodes with very high or very low social closeness to
the ratees, mildly reduce the weights of those from the
nodes with high or low social closeness to the ratees, and
nearly maintain the ratings from the nodes with normal
closeness to the ratees. As a result, the weight from the
ratings from suspected colluders is reduced.

4.2 Interest similarity based collusion deterrence
In SocialTrust, each node has an interest set
V=<v1, v2, v3, ..., vk> indicating its interests. In P2P
applications, the interests of a peer can be derived from
the resources it frequently requests or from the interests
in the user’s social network profile. As mentioned, the
social interest similarity between ni and nj is calculated
by:

Ωs(i,j) =
|Vi ∩ Vj |

min(|Vi|, |Vj |) . (7)

Nodes with larger Ωs share more interests.
One property of social networks is that nodes with

common interests tend to interact with each other more
often than with other nodes [42]. This was confirmed in
previous study [44] on peoples’ relations based on their
interested files. P2P resource sharing and transactions
usually occur between nodes sharing similar interests,
As a result, if two nodes ni and nj sharing few interests
(i.e., small Ωs(i,j)) rate each other frequently, they are
likely to be colluding with each other as indicated in
B3 in Section 3. As indicated in B4, if two nodes having
a high interest similarity but one frequently rates the
other with low ratings, they are likely to be business
competitors and the rater is a potential malicious node.

In these two cases, SocialTrust reduces the weight of
the ratings from suspected colluders that have very high
or low Ωs(i,j) with the ratee using the Gaussian function:
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Fig. 6: Two-dimensional reputa-
tion adjustment.

r(i,j) = r(i,j) · α · e−
(Ωs(i,j)

−Ω̄si
)2

2|maxΩsi
−minΩsi

|2 , (8)
where maxΩsi , minΩsi and Ω̄si denote the maximum,
minimum and average interest similarity of node ni with
the nodes it has rated, respectively. According to B3
and B4, the rating from ni to nj is adjusted according
to Equation (8) when ni frequently rates nj with high
ratings and (Ωs(i,j) − Ω̄si) < 0 which implies that ni and
nj share few interests, or when ni frequently rates nj

with low ratings and (Ωs(i,j) − Ω̄si) > 0 which implies
that ni and nj share many interests.

Similar to social closeness, we also can replace Ωsi
with the average Ωs of a pair of transaction peers in
the system based on the empirical result. For example,
in Overstock, the average, maximum and minimum
interest similarity between a pair transaction peers are
0.423, 1, and 0.13.

4.3 Combined social closeness and similarity based
collusion deterrence
Combining Formulas (6) and (8), we get:

r(i,j)(Ωc,Ωs) = r(i,j)·α·e
−(

(Ωc(i,j)
−Ω̄ci

)2

2|maxΩci
−minΩci

|2 +
(Ωs(i,j)

−Ω̄si
)2

2|maxΩsi
−minΩsi

|2 )
,

(9)
which simultaneously considers social closeness and in-
terest similarity. For example, if two low-reputed nodes
rating each other with high frequency have a very
close social relationship (i.e., high Ωc(i,j) ) but share few
common interests (i.e. low Ωs(i,j) ), they are more likely
to collude with each other. This is because two nodes
have low probability to frequently request resources
from each other if they share few common interests, and
it is unlikely that a node will request a resource from
a low-reputed node. Let us use Hc and Lc to denote
very high and low social closeness and use Hs and
Ls to denote very high and low interest similarity. As
Figure 6 shows, the rating values between the nodes that
have (Hc, Hs), (Hc, Ls), (Lc, Hs), and (Lc, Ls) are greatly
reduced. Therefore, based on Formula (9), the influences
of the collusion listed in B1-B4 are reduced.

SocialTrust can be executed in a centralized or dis-
tributed manner. In the centralized system, a centralized
reputation manager manages all node reputation values
and social information, and adjusts the values based on
social closeness and similarity. As a distributed Social-
Trust system is more challenging and suitable for large-
scale distributed P2P networks, here, we introduce how
SocialTrust is executed in a distributed manner. It can be
easily adapt to the centralized reputation system.

In a reputation system, one or a number of trust-
worthy node(s) function as resource manager(s). Each
resource manager is responsible for collecting the ratings
and calculating the global reputation of certain nodes.
Thus, each resource manager can keep track of the

rating frequencies and values of other nodes for the
nodes it manages, which helps them to detect collu-
sion in SocialTrust. A manager adjusts the ratings from
suspected colluders when periodically calculating node
global reputation. Suppose Mj is the resource manager
of nj . Mj keeps the interest set and friendlist of nj . After
each reputation update interval T , Mj calculates the
number of positive and negative ratings during T from
each rater node ni for nj , denoted by t+(i,j) and t−(i,j) .

SocialTrust sets the thresholds for positive rating fre-
quency and negative rating frequency of a node, denoted
by T+

t and T−
t from empirical experience. For example,

in Overstock, the average, maximum and minimum
numbers of positive ratings of a node per month are
1.75, 21 and 1, while those of negative ratings are 1.84,
2 and 1. When t+(i,j)>T+

t or t−(i,j)>T−
t , which means that

ni is a suspected colluder, and Mj does not have interest
set and friendlist of rater ni, it contacts ni’s reputation
manager Mi for the information. Based on the calculated
Ωc(i,j) and Ωs(i,j) and nj ’s reputation, Mi makes further
judgement and adjusts the r(i,j) accordingly.

Specifically, SocialTrust sets a threshold for global
reputation (R) of a low-reputed node, denoted by TR. It
also sets high and low thresholds for Ωc(i,j) and Ωs(i,j)
to represent the degree of social closeness and interest
similarity between a pair of nodes, denoted by Tch , Tcl ,
Tsh , and Tsl , respectively. If t+(j,i)>T+

t , which means nj

also frequently rates ni with positive ratings, if (1) their
social closeness is low (Ωc(i,j)<Tcl ) (B1), (2) their social
closeness is high (Ωc(i,j)>Tch ) and nj is a low-reputed
node (Rj<TR) (B2), or (3) their interest similarity is
low (Ωs(i,j)<Tsl ) (B3), Mi adjusts r(i,j) according to
Equation (9). If t−(i,j)>T−

t , which means ni frequently
rates nj with negative ratings, and their interest
similarity is high (Ωs(i,j)>Tsl ) (B4), Mi adjusts r(i,j).

4.4 Resilience to falsified static social information
Since SocialTrust depends on the social network to com-
bat collusion, colluders may manipulate the social net-
work to counterattack SocialTrust. Recall that SocialTrust
identifies reputation raters and ratees with very high
or very low social closeness or interest similarity. Thus,
colluders would fabricate static social network informa-
tion (i.e., social relationships and interests in profiles)
to keep their social closeness and interest similarity at a
moderate level in order to avoid being detected. In order
to strengthen the ability of SocialTrust in combating
collusion, we further improve the social closeness and
interest similarity measurement’s accuracy. We consider
weight for the closeness of different social relationships.
For example, kinship relationship should have higher
weight than the friendship relationship. The social close-
ness between two nodes in Formula (3) is updated to:

Ωc(i,j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∑

l λ
(l−1)wdl

)·f(i,j)
∑|Si|

k=0
f(i,k)

, ni and nj are adjacent,

∑
k∈|Si∩Sj |

Ωc(i,k)
+Ωc(k,j)

2
non-adjacent nodes, k �= ∅,

min
1≤i≤n

Ωc(ki,ki+1)
non-adjacent nodes, k = ∅,

(10)
where wdl

denotes the weight of the lth social relation-
ship between ni and nj in the relationship list sorted
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in descending order of the relationship weight, and λ ∈
[0.5, 1] denotes a constant relationship scaling weight.

We also consider the weight of each node’s interest.
We use ws(i,l) to denote the weight of node ni on interest
l. It equals the percent of node ni’s requests on interest
l in all of its requests. Then, the interest similarity in
Formula (11) is updated to:

Ωs(i,j) =

∑
l ws(i,l) · ws(j,l)

min(|Vi|, |Vj |) , l ∈ {Vi ∩ Vj}. (11)

Thus, SocialTrust depends not only on the static social
network information but also the real node interaction in
the social network and resource requests, which prevents
the colluders from manipulating the social information.

To avoid being detected due to B1, colluders would
try to increase their social closeness by increasing their
total number of social relationships. As shown in Equa-
tion (10), the social closeness Ωc(i,j) is determined not
only by the number of social relationships but also
the interaction frequency. Although adding more social
relationships can increase Ωc(i,j) , the increment can be
very small if the interaction frequency coefficient f(i,j)
is low (i.e., the nodes actually are not socially close).
To avoid being detected due to B2, colluders would try
to reduce the number of social relationships to gain a
median social closeness value. Similarly, a pair of nodes
ni and nj with high interaction frequency f(i,j) (i.e.,
the two nodes are really socially-close) still have large
social closeness value Ωc(i,j) . As SocalTrust considers the
weight of social closeness and exponentially decreases
the effect of the closeness weight on the final social close-
ness metric, the calculated Ωc(i,j) can more accurately
reflect the node social closeness. If two colluders add or
reduce low-weight social relationships between them, it
only slightly changes the social closeness.

To avoid being detected due to B3, colluders would
try to increase their common-interests. The colluders
may fill out false interest information in their profiles
to match their colluders’ interests to gain a reasonably
high interest similarity value in SocialTrust. As shown in
Equation (11), in addition to a node’s interests, its per-
cent of requests on the interests is also considered when
calculating the interest similarity Ωs(i,j). Although a col-
luder’s profile lists many interests matching the boosting
colluder’s interests, their social interest similarity Ωs(i,j)

is still small if the colluder does not have many requests
on the interests, which implies that it really has no such
interests. To avoid being detected due to B4, a colluder
may reduce many common interests in its profile with
its ratee to gain a moderate interest similarity with the
ratee. However, the colluder’s frequent requests on the
deleted common interests still reveals that these are its
interests. As shown in Equation (11), a colluder’s many
requests on these interests still leads to high interest
similarity value with its ratee.

In conclusion, it is difficult for colluders to manipulate
social network’s information to counterattack Social-
Trust. Since the underlying business model of collud-
ers is to gain benefits from collusion, by preventing
colluders from gaining high reputations value through
suspicious behaviors, the colluders’ underlying business
model will be destroyed. Then nodes should not have
incentives to collude each other by using SocialTrust.

5 PERFORMANCE EVALUATION

5.1 Experimental setup

Network model. We built an unstructured P2P network
with 200 nodes. According to the Overstock trace, the
number of total interests in the P2P network was set to
20, and the number of interests for each node was ran-
domly chosen from [1,10]. Nodes with the same interests
are connected with each other, and a node requests re-
sources (resource and service are interchangeable terms
in this section) from its interest neighbors. In addition,
we randomly assign [1-2] relationships between nodes
in the system, and the colluders are randomly assigned
with [3-5] relationships that have the same weight.

As observed in Section 3, in the experiments, the
frequency at which a node requests resources in its
interests conforms to a power law distribution. Each
node can handle 50 requests simultaneously per query
cycle. When selecting a service for its request, a node
randomly chooses a neighbor with available capacity
greater than 0 and reputation higher than TR = 0.01.

Simulation execution. The simulation proceeds in
simulation cycles. Each simulation cycle has 30 query
cycles. In each query cycle, each peer issues a query
if it is active. The probability that a node is active
is randomly chosen from [0.5,1]. Among the colluders,
the nodes receiving ratings from other nodes are called
boosted nodes, and the nodes rating others are called
boosting nodes. In each query cycle, a boosting node rates
a boosted node [3-7] times on an interest randomly
selected from the interests of the boosted node. Each
experiment has 50 simulation cycles. Each experiment
is run 5 times, and the average of the results is the final
result. The 95% of the confidential interval is reported.

Node model. We consider three types of nodes:
pretrusted nodes, malicious colluders, and normal
nodes. The pretrusted and normal nodes always provide
authentic resources to the requesters with a probability
of 1 and 0.8, respectively. We use B to denote the
probability that a malicious node offers an authentic file
(i.e., good behavior). Since colluders usually offer low
QoS [7], [8], we tested the performance of reputation
systems when B=0.2 and 0.6, respectively. We randomly
chose 9 pretrusted nodes and 30 colluders in the system.
We assigned the social distance between colluders to
1. Considering most transactions in Overstock occur
between nodes with 1-3 social distance, we set the social
distances between all other nodes to values randomly
chosen from [1,3]. In these experiments, we focus on the
collusion behavior of B2 and B3. The social interaction
frequency f(i,j) equals the rating frequency (i.e., resource
transaction frequency) of ni to nj . In a nutshell, colluders
have relatively more social relationships, higher social
interaction frequency, and less common interests.

Collusion model. We consider the following three
major collusion models [7]: the pair-wise collusion
model (PCM), the multiple node collusion model
(MCM), and the multiple and mutual collusion model
(MMM). We consider positive ratings among colluders
in the experiments. Similar results can be obtained for
the collusion of negative ratings. In PCM, two colluders
rate each other with a positive value at a high frequency
in order to raise each other’s reputation. In MCM, a
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0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

R
ep

u
ta

ti
o

n
 v

al
u

e

Node ID 

(b) Reputation distribution in eBay.
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Fig. 7: Comparison of EigenTrust and eBay without colluders.

number of boosting nodes rate a single boosted node
with high frequency in order to boost the reputation of
that node, but the boosted node does not rate boosting
nodes back. In MMM, a number of boosting nodes rate
boosted nodes with high frequency, and the boosted
nodes rate boosting nodes back.

Reputation model. The initial reputation of each node
in the network is 0. A client gives a service rating of
1 when it receives an authentic service. Otherwise, the
rating is -1. Each node’s global reputation is updated
once after each simulation cycle. The parameter α in
the Gaussian function was set to 1. We measured the
performance of the following three reputation systems:
EigenTrust [10], eBay, and SocialTrust. We set the weight
of reputations from pretrusted nodes in EigenTrust to
0.5. We use a simulation cycle to represent a week in
eBay. After each simulation cycle, we scale the reputa-
tion of each node to [0,1] by Ri/

∑n
k=0 Rk, where Ri is

accumulated ratings of ni.
We assigned user IDs 1-9 to the pretrusted nodes

and IDs 10-39 to the colluders. With a collusion-resilient
reputation system, we expect to see that the nodes with
ID 10-39 (i.e., colluders) have extremely low reputation
values and the normal nodes have comparably higher
reputation values. We also conducted experiments with
different numbers of nodes and colluders. The relative
performance differences between the different systems
remain almost the same as those we will report. Though
we determine the experimental setting parameters ran-
domly in their reasonable ranges, changing the param-
eter values will not change the relative performance
differences in a given experiment setup.

5.2 EigenTrust and eBay without colluders
The malicious nodes offer authentic files with prob-
ability randomly selected from [0.2, 0.6]. Figure 7(a)
shows the reputation distribution of EigenTrust without
colluders. It shows that the reputation values of the
malicious nodes are very low and the reputation value of
pretrusted node and a small number of normal nodes are
comparatively high. This is because the node selection
strategy in EigenTrust always retrieves files from the
nodes with reputation larger than the threshold Tr. Since
the pretrusted nodes and normal nodes offer more au-
thentic files than malicious nodes, the reputation values
of these nodes are much higher than malicious nodes.

Figure 7(b) plots the reputation distribution of nodes
in eBay without colluders. It shows the reputation values
of the nodes are distributed relatively evenly and nodes
with IDs in 10-39 have lower reputation. Since the
malicious nodes have a high probability to send inau-
thentic files to other nodes, the reputation values of the
malicious nodes are lower than other nodes. Nodes with

lower reputation values attract less traffic requests. Since
in eBay, a node’s reputation increase is only determined
by whether the node offers more authentic files than
inauthentic files in each simulation cycle, the nodes with
B>0.5 are possible to have good reputation values. In
contrast, in EigenTrust, every misbehavior of a node is
counted into the reputation calculation. This causes the
reputation values of malicious nodes in EigenTrust to be
lower than those of malicious nodes in eBay.

Figure 7(c) compares the percent of the service queries
sent to malicious nodes in EigenTrust and eBay. It shows
that the percent of the services provided by the malicious
nodes in EigenTrust is much less than eBay. In eBay,
since the reputation of a node is only based on whether
it provides more authentic products than inauthentic
products in a simulation cycle, the reputation updates in
eBay are slow. Therefore, it takes a long time for a good
node to gain a high reputation and for a malicious node
to receive a low reputation. This allows a large amount
of service queries to be sent to the malicious nodes.

5.3 Pair-wise collusion (PCM)
We first show the effectiveness of EigenTrust, eBay and
SocialTrust in thwarting pair-wise collusion with col-
luders offering authentic services with 0.6 probability
(B=0.6). The colluders rate each other with high fre-
quency of 20 ratings per query cycle. Figure 8(a) shows
the reputation distribution of all nodes in EigenTrust.
We can see that colluders have much higher reputations
than all other nodes. Also, the reputations of pretrusted
nodes are slightly higher than normal nodes but are
significantly lower than colluders. Since the colluders
behave well with probability 0.6, they gain certain repu-
tations. The colluders further increase the reputations of
each other, which helps them to attract many service re-
quests to further increase their reputations. Although the
normal nodes and pretrusted nodes offer good services
with probabilities of 0.8 and 1 respectively, their repu-
tations are dramatically lower than colluders. Therefore,
EigenTrust has low effectiveness in combating collusion,
and its generated reputations cannot truly reflect the
node trustworthiness when B=0.6. Figure 8(b) plots the
reputation distribution of all nodes in eBay. It shows
that the reputations of the colluders are much higher
than all other nodes. The reason is that eBay enables
the colluders with B=0.6 to increase reputations. Also,
the mutual positive ratings between colluders further
boost their own reputations. Therefore, eBay also has
low effectiveness in combating collusion.

Comparing Figure 8(a) and Figure 8(b), the reputa-
tions of colluders in EigenTrust are higher than those
in eBay, and the reputations of pretrusted and normal
nodes in EigenTrust are much lower than those in eBay.
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0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

1 9
1

7
2

5
3

3
4

1
4

9
5

7
6

5
7

3
8

1
8

9
9

7
1

0
5

1
1

3
1

2
1

1
2

9
1

3
7

1
4

5
1

5
3

1
6

1
1

6
9

1
7

7
1

8
5

1
9

3

R
ep

u
ta

ti
o

n

Node ID

Probability of good behavior of
colluders = 0.6

(d) eBay with SocialTrust.

Fig. 8: Reputation distribution in PCM with B=0.6 (pretrusted nodes: 1-9, colluders: 10-39).
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(b) eBay.
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(c) EigenTrust with SocialTrust.
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Fig. 9: Reputation distribution in PCM with B=0.2 (pretrusted nodes: 1-9, colluders: 10-39).

This is because in EigenTrust, the ratings from nodes are
weighted based on the reputations of the nodes. Since
the ratings from colluders with high reputation have
high impact on the reputation calculation, the reputation
values of the colluders can be quickly boosted. In eBay,
the contribution of the ratings from the colluders is
limited since no matter how frequently a node rates
the other node in a simulation cycle, eBay only counts
all the ratings as one rating. Therefore, eBay constrains
reputation increase caused by collusion, leading to much
lower reputations of colluders.

Figures 8(c) and (d) show the reputation distributions
of the nodes in EigenTrust and eBay with SocialTrust,
respectively. We can see that the colluders in both figures
have much lower reputation values than those in Fig-
ures 8(a) and (b). The results show that SocialTrust can
help EigenTrust and eBay to effectively thwart collusion.
SocialTrust identifies suspected colluders based on social
closeness and distance, and adjusts their reputation. This
causes the colluders in SocialTrust to finally receive
significantly low reputations. Since no nodes choose
low-reputed nodes for services, SocialTrust effectively
counters the collusion.

Next, we measure the reputation distribution of nodes
when B=0.2 in different systems. Figure 9(a) shows the
reputation distribution of nodes in EigenTrust. We see
that EigenTrust is able to reduce the reputation values
of the colluders. Although colluders rate each other
frequently, the weight of their ratings is very low due
to their low-QoS and reputations. Therefore, they finally
receive low reputations and fewer service requests. Since
the pretrusted nodes always behave well, they continu-
ously receive high reputation values, finally gaining high
reputations. We also notice that some normal nodes have
high reputations while others have lower reputations. At
the initial stage, a node randomly chooses from a num-
ber of options with the same reputation value 0. Since
the chosen node earns reputation, it subsequently has
a higher probability to be chosen. Therefore, EigenTrust
can counter collusion when the colluders offer low-QoS.

Figure 9(b) shows the reputation distribution of nodes
in eBay. The reputations of colluders are much lower

0

0.005

0.01

0.015

0.02

0.025

1 9
1

7
2

5
3

3
4

1
4

9
5

7
6

5
7

3
8

1
8

9
9

7
1

0
5

1
1

3
1

2
1

1
2

9
1

3
7

1
4

5
1

5
3

1
6

1
1

6
9

1
7

7
1

8
5

1
9

3

R
ep

u
ta

ti
o

n

Node ID

Probability of good behavior
of colluders = 0.2

(a) EigenTrust.

0.00E+00

5.00E-03

1.00E-02

1.50E-02

2.00E-02

2.50E-02

3.00E-02

3.50E-02

1 9
1

7
2

5
3

3
4

1
4

9
5

7
6

5
7

3
8

1
8

9
9

7
1

0
5

1
1

3
1

2
1

1
2

9
1

3
7

1
4

5
1

5
3

1
6

1
1

6
9

1
7

7
1

8
5

1
9

3

R
ep

u
ta

ti
o

n

Node ID

Probability of good behavior
of colluders = 0.2

(b) EigenTrust with SocialTrust.
Fig. 10: Reputation distribution in PCM with compromised pretrusted
nodes with B=0.2 (pretrusted nodes: 1-9, colluders: 10-39).

than those of the pretrusted nodes and normal nodes.
The colluders receive low ratings from normal nodes due
to their high probability of misbehavior. Although the
colluders rate each other with high frequency to boost
their reputations, eBay disregards the ratings from the
same rater in the same simulation cycle, leading to a
low final reputation. Because colluders still receive high
unweighted ratings with probability of 0.2, they earn
slightly higher reputations than in EigenTrust.

Figures 9(c) and (d) show the reputation distribution
of nodes in EigenTrust and eBay with SocialTrust. Both
figures show that the reputation values of colluders
are nearly 0. That is, SocialTrust can effectively combat
collusion nodes. By considering social closeness and the
interest relationship between nodes, SocialTrust reduces
the impacts of the ratings from the potential colluders
and reduces the reputation values of the colluders.

5.4 Pair-wise collusion (PCM) with compromised
pretrusted nodes
We consider a scenario where B=0.2 and compromised
pretrusted nodes are involved in the collusion. We ran-
domly selected 7 nodes from the pretrusted nodes and
let them randomly select a colluder with which to col-
lude. We set the social distance between a compromised
pretrusted node and its conspired colluder to 1.

Figure 10(a) shows the reputation distribution of the
nodes in EigenTrust. Comparing Figure 10(a) with Fig-
ure 9(a), we find that compromised pretrusted nodes
greatly boost the reputations of themselves and collud-
ers, and they reduce the reputations of normal nodes
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(c) EigenTrust with SocialTrust.
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Fig. 11: Reputation distribution in MCM with B=0.6 (pretrusted nodes: 1-9, colluders: 10-39).
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(b) eBay.
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(c) EigenTrust with SocialTrust.
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Fig. 12: Reputation distribution in MCM with B=0.2 (pretrusted nodes: 1-9, colluders: 10-39).

accordingly. This is due to three reasons. First, the rat-
ings of pretrusted nodes have higher weight and they
rate highly on the colluders, causing the reputations
of the colluders in collusion with the pretrusted nodes
to increase. Second, because of the high reputations of
these colluders, their ratings for the pretrusted nodes
also have higher weight, further boosting pretrusted
nodes’ already high reputations. Third, as the colluders
mutually rate each other with high frequency, the rep-
utations of all colluders are boosted. The result implies
that malicious nodes can take advantage of EigenTrust’s
pretrusted node strategy by compromising these nodes,
which helps them to quickly boost their own reputations.
EigenTrust cannot deal with the challenge of collusion
involvement of compromised pretrusted nodes.

Figure 10(b) shows the reputation distribution of
the nodes in EigenTrust with SocialTrust in the same
scenario. We observe that high-reputed nodes are
skewed among normal nodes and the non-compromised
pretrusted nodes. The reputations of the colluders and
pretrusted nodes involved in collusion have nearly 0 rep-
utations. The pretrusted nodes have high probability to
provide authentic services and receive high reputations
accordingly. SocialTrust detects the pairs of suspicious
colluders, including the compromised pretrusted nodes,
which have a high mutual rating frequency. It then ad-
justs their reputations according to their social closeness
and interest similarity. Therefore, although a compro-
mised pretrusted node initially has a high reputation, its
reputation eventually drops to a low value. The results
demonstrate the capability of SocialTrust in countering
collusion even when pretrusted nodes are compromised.

5.5 Multiple node collusion (MCM)
In the multiple node collusion model, among the 30
colluders, 7 nodes are randomly selected as the boosted
nodes, and all other colluders randomly select one of
the boosted nodes to collude with. Figure 11(a) shows
the reputation distribution of nodes in EigenTrust when
B=0.6. It demonstrates that some colluders, which are
boosted nodes, have very high reputations while other
colluders, which are boosting nodes, have very low

reputations. This is caused by two reasons. First, as
the colluders offer authentic services to others with
probability of 0.6, they can initially gain reputations. Sec-
ond, since the boosted nodes frequently receive positive
ratings from several boosting nodes whose reputation
values are not low, the reasonable rating weight of
the boosting nodes can greatly increase the reputation
value of the boosted nodes. The boosting nodes do not
receive frequent ratings from the boosted nodes. As the
boosted nodes receive more and more service requests,
the boosting nodes receive fewer and fewer requests,
causing fewer opportunities to raise their reputations.

Figure 11(b) plots the reputation distribution of the
nodes in eBay. It shows that the reputation values of
some of the colluders are much higher than other nodes
in the system while other colluders have comparatively
lower reputations. This is due to the same reason in Fig-
ure 11(a). Figure 11(c) plots the reputation distribution
of nodes in EigenTrust with SocialTrust. By comparing
it to Figure 11(a), we see that SocialTrust can effectively
reduce the reputation values of both boosted and boost-
ing nodes in EigenTrust. Although boosted nodes can
receive a large number of positive ratings from boosting
nodes, the values of these ratings are reduced according
to the social and interest relationship between the raters
and ratees. Meanwhile, due to the low reputation values
of those boosting nodes, the weights of their ratings are
very low. Therefore, it is difficult for them to increase the
reputation values of boosted nodes even with high rating
frequency. Figure 11(d) shows the reputation distribution
of the nodes in eBay with SocialTrust. It shows that So-
cialTrust can effectively fight against collusion. Although
the boosting nodes can increase the reputation values of
the boosted nodes as shown in Figure 11(b), SocialTrust
reduces the impact of the rating between the colluders
based on their social closeness and interest similarity,
and the reputation values of the colluders are reduced
significantly in SocialTrust.

Next, we changed the probability that the colluders
provide authentic services to 0.2. Figure 12(a) shows the
reputation distributions of the nodes in EigenTrust. It
shows that the reputations of the colluders including
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(a) EigenTrust.
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(b) eBay.
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(c) EigenTrust with SocialTrust.
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Fig. 13: Reputation distribution in MMM with B=0.6 (pretrusted nodes: 1-9, colluders: 10-39).
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(c) EigenTrust with SocialTrust.
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(d) eBay with SocialTrust.
Fig. 14: Reputation distribution in MMM with B=0.2 (pretrusted nodes: 1-9, colluders: 10-39).

the boosted nodes are very low. Two factors contribute
to this phenomenon. First, as the boosting nodes have
low reputation values, the weight of their ratings is
small. Therefore, their frequent ratings cannot affect the
reputations of the boosted nodes. Second, as the boosted
nodes have a high probability to provide inauthentic
service, the ratings they receive from other normal nodes
are very low. EigenTrust can counter MCM when the col-
luders provide authentic services with low probability.

Figure 12(b) shows the reputation distribution of
nodes in eBay. We can see that the reputation values of
some colluders are low while others are comparatively
high. Since the probability that the colluders offer au-
thentic services is only 0.2, they receive low reputation
values from normal nodes. The boosted nodes receive
a large number of positive ratings from boosting nodes.
Since the rating values from low reputed boosting nodes
are not weighted, they can partially offset the negative
ratings from normal nodes. Consequently, the reputation
values of the boosted nodes are increased incrementally.
Figures 12(c) and (d) show the reputation distribution
of the nodes in EigenTrust and eBay with SocialTrust,
respectively. The figures show that SocialTrust further
reduces the reputation values of the boosted nodes.
The results demonstrate the effectiveness of SocialTrust
in combating collusion by considering their social and
interest relationships.

5.6 Multiple and mutual node collusion (MMM)

In this section, we evaluate the effectiveness of Eigen-
Trust, eBay and SocialTrust in combating collusion in
MMM. In every query cycle, each boosting node rates
randomly chosen boosted nodes 20 times and the
boosted node rates its boosting nodes 5 times. Fig-
ures 13(a) and (b) show the reputation distribution of the
nodes in EigenTrust and eBay, respectively. Comparing
these two figures to Figure 11(a) and (b), we see that
in MMM, the reputation values of both boosted nodes
and boosting nodes are much higher. Since the colluders
offer authentic services with probability 0.6, they gain a
certain amount of reputations. In MMM, as the boosted
nodes with high reputations rate the boosting nodes

back, the reputation values of boosting nodes are also
enhanced. Then, the weights of boosting nodes’ ratings
increase, which in return boosts the reputation values of
boosted nodes. Figures 13(c) and (d) illustrate the node
reputation distribution of nodes in EigenTrust and eBay
with SocialTrust, respectively. The figures show that the
reputation values of colluders are greatly reduced due
to the same reasons as Figures 11(c) and (d).

Figure 14(a) shows the reputation distribution of the
nodes in EigenTrust in MMM with B=0.2. Comparing
Figure 14(a) with Figure 12(a) for MCM, we find that in
Figure 14(a), some colluders have extremely high reputa-
tion, which are even higher than those of the pretrusted
nodes. These colluders are the boosted nodes. In MMM,
the boosted nodes and boosting nodes mutually rate
each other. Therefore, the reputation values of the boost-
ing nodes are initially low, and they are increased as
the boosted nodes having high rating weights rate them
back. The boosting nodes then in turn greatly increase
the reputation values of the boosted nodes. Although
boosted nodes rate boosting nodes at a lower frequency,
the boosted nodes still reach very reputations.

In PCM with B=0.2 (Figure 9(a)), the colluders cannot
boost their reputations because their rating frequency of
20 per query cycle is not high enough to offset the low
reputations from normal nodes. In contrast, in MMM,
a boosted node receives 80 ratings per query cycle on
average from boosting nodes. Therefore, although they
receive low ratings from normal nodes, their reputations
can still be increased. The results demonstrate that
EigenTrust is not effective in countering MMM where
nodes rate each other with a high frequency.

Comparing Figure 14 and Figure 13, the reputa-
tion values of colluders in EigenTrust with B=0.2 are
even higher than those with B=0.6. Those colluders are
actually boosted nodes. With B=0.6, as the boosting
nodes gain some reputations, they receive certain ser-
vice requests from normal nodes. Therefore, the boosted
node receives less service requests and lower reputa-
tion values. When B=0.2, boosting nodes have very
low reputation and subsequently cannot receive many
service requests from the normal nodes. Consequently,
the boosted nodes receive more service requests and
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(a) EigenTrust in MCM.
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(b) EigenTrust in MMM.
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(c) EigenTrust with SocialTrust in MCM.
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Fig. 15: Reputation distribution in MCM and MMM with compromised pretrusted node with B=0.2 (pretrusted nodes: 1-9, colluders: 10-39).
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(b) eBay with SocialTrust.

Fig. 16: Reputation distribution in PCM with B=0.6
(pretrusted nodes: 1-9, colluders: 10-39).
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(a) EigenTrust with SocialTrust.
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(b) eBay with SocialTrust.

Fig. 17: Reputation distribution in MCM with B=0.6 (pretrusted nodes:
1-9, colluders: 10-39).

comparatively higher reputations.
Figure 14(b) shows the reputation distribution of the

nodes in eBay. Comparing this figure with Figure 12(b)
for MCM, we find that the reputation values of boosting
nodes in MMM are slightly higher. The reason is that
the boosting nodes also receive ratings from boosted
nodes, which increases the reputation values of the
boosting node. Figures 14(c) and (d) show the reputation
distribution of the nodes in EigenTrust and eBay with
SocialTrust, respectively. Comparing these two figures
to Figures 14(a) and (b), we see that SocialTrust can
effectively reduce the reputation of the colluders due to
the same reasons as Figures 11(c) and (d).

5.7 Node collusion (MCM and MMM) with compro-
mised pretrusted nodes
Figure 15(a) and (b) demonstrate the reputation distri-
bution of the nodes in EigenTrust in MCM and MMM,
respectively, when compromised pretrusted nodes
are involved in collusion with B=0.2. Colluders and
pretrusted nodes collude in the same way as Figure 10.
Comparing Figure 15(a) to Figure 12(a) for MCM, we see
that when pretrusted nodes are involved in collusion,
the reputations of some colluders increase greatly while
those of pretrusted nodes decrease. Because of B=0.2,
boosting nodes have low reputations and a low weight
for their ratings. As shown in Figure 12(a), their frequent
ratings on the boosted nodes cannot greatly increase
their reputations. The reputation values of the pretrusted
nodes are high. Therefore, when pretrusted nodes are
compromised, as shown in Figure 15(a), their ratings
greatly increase the reputations of the boosted nodes,
which attract many requests from the pretrusted nodes.

Figure 15(b) shows the reputation distribution of the
nodes in EigenTrust in MMM. It shows that the reputa-
tion values of colluders are 3-4 times higher than those
of the colluders when pretrusted nodes are not involved
in collusion (Figure 14(a)). Because the pretrusted nodes
give positive ratings on colluders with high frequency,
the reputation values of the boosted nodes become
very large, and the weight of their ratings increases

accordingly. This greatly increases the reputations of
colluders through frequent ratings between each other.
Figures 15(c) and (d) show the reputation distribution
of the nodes in EigenTrust with SocialTrust in MCM
and MMM, respectively. The figures show that both
the colluders and compromised pretrusted nodes have
low reputations. It means that SocialTrust can still effec-
tively reduce the reputation values of the colluders and
compromised pretrusted nodes based on the social and
interest relationship between the nodes.
5.8 Resilience to falsified social information
In this experiment, we assume colluders falsify their
social information so that each pair of colluders has
only one social relationship and identical interests. The
number of identical interests is randomly chosen from
[1-10]. The frequency of requests on a node’s interest
wc(i,l) equals the percent of requests on this interest in
all the node’s requests in a simulation cycle. Previous
experimental results show that when B=0.6, both Eigen-
Trust and eBay with SocialTrust can effectively detect the
colluders. We now test their resilience to falsified social
relationships and interests.

Figure 16, Figure 17, and Figure 18 show the rep-
utation distribution of both EigenTrust and eBay with
SocialTrust with falsified social information in PCM,
MCM and MMM. By comparing the results in these fig-
ures with the results with accurate social information in
Figure 8(c) and (d), Figure 11(c) and (d), and Figure 13(c)
and (d) for each model, we find that although the repu-
tation values of colluders are higher with falsified social
information than those with accurate social information,
their reputation values are still significantly lower than
those of other nodes. It implies that SocialTrust still
can effectively thwart collusion even when the social
information is falsified. In addition to the social infor-
mation in user profiles, SocialTrust also considers user
interaction frequency and resource request frequency
which cannot be falsified and can truly reflect real user
social closeness and social interest.
5.9 Efficiency and effectiveness in combating col-
luders
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We measured the number of simulation cycles until
the reputation values of colluders are lower than 0.001.
Figure 19(a) shows the 1st percentile, 99th percentile
and median values of the number of simulation cycles
in EigenTrust, SocialTrust and eBay when B=0.2. We
see that both EigenTrust and SocialTrust take about 6-
8 simulation cycles, while eBay takes about 25 simu-
lation cycles. This is because the reputation calculation
methods in EigenTrust and SocialTrust make the node
reputation values converge very fast, while the repu-
tation calculation in eBay is not sufficiently efficient.
Figure 19(b) shows the number of simulation cycles
in EigenTrust and SocialTrust when B=0.6. It exhibits
similar performance as in Figure 19(a) due to their fast
reputation convergence. We did not plot eBay in this
figure because eBay cannot detect colluders when B=0.6.
We also measured the number of simulation cycles of
Eigentrust, SocialTrust and eBay in PCM and MCM. The
experimental results are almost the same as those in
MMM, which confirms the high efficiency of collusion
deterrence in EigenTrust and SocialTrust. Due to the
space limit, we do not show these experimental here.
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(b) eBay with SocialTrust.

Fig. 18: Reputation distribution in MMM with B=0.6 (pretrusted
nodes: 1-9, colluders: 10-39).
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Fig. 19: Efficiency for combating colluders in MMM.
Figure 20 shows the average reputation values of

the colluders versus different social distances between
colluders in PCM, MMM and MCM. We see that
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Fig. 20: Average reputation vs.
social distance.

the average reputation of
colluders increases slightly
when the social distance
increases from 1 to 2,
but decreases slightly when
it increases to 3 subse-
quently. Recall that the dis-
tance between a pair of
nodes was randomly cho-
sen from [1,3]. Social dis-
tance 1 means social closeness is high while social
distance 3 means social closeness is low. As shown in
Equation (9), the rating between two nodes with too
close or too far-away social relationship is reduced more.
We also see that the reputation values of the colluders
are constantly lower than those of normal nodes even

when the colluders have moderate social distance 2.
This result confirms the effectiveness of SocialTrust in
mitigating the adverse influence of collusion even when
colluders keep their social distance at a normal level.
SocialTrust reduces the rating value based on both social
closeness and interest similarity, which are very difficult
to be manipulated as explained in Section 4.4.

5.10 Percentage of requests sent to colluders
Table 1 shows the percentage of requests sent to col-
luders in each system in different collusion models with
B=0.2 and B=0.6, respectively. In the table, “(Pre)” means
that the pretrusted nodes are involved in collusion.
First, we see that in all three collusion models, col-
luders receive more requests when B=0.6 than when
B=0.2 in most systems. This is because colluders with
higher probability to provide authentic services have
higher reputation values initially, which leads to higher
weight for their ratings and hence further enhance their
reputations, finally attracting more requests from the
normal nodes. Second, comparing the results in different
collusion models, we find that more service requests are
sent to colluders in MMM and PCM than MCM. This
is because colluders in MMM and PCM mutually rate
each other with high frequency while boosting nodes in
MCM do not receive ratings from boosted nodes.

TABLE 1: Percentage of the requests sent to colluders.

Pair-wise collusion model (PCM)
B=0.2 B=0.6

eBay 6% eBay 17%
EigenTrust 17%EigenTrust 24%
EigenTrust (Pre) 22%EigenTrust (Pre) 24%
eBay+SocialTrust 3% eBay-Social 2%
EigenTrust+SocialTrust 2% EigenTrust+SocialTrust 3%
EigenTrust+SocialTrust (Pre)2% EigenTrust+SocialTrust (Pre)2%

Multiple node collusion model (MCM)
B=0.2 B=0.6

eBay 7% eBay 16%
EigenTrust 7% EigenTrust 15%
EigenTrust (Pre) 9% EigenTrust (Pre) 10%
eBay+SocialTrust 3% eBay+SocialTrust 2%
EigenTrust+SocialTrust 2% EigenTrust+SocialTrust 2%
EigenTrust+SocialTrust (Pre)2% EigenTrust+SocialTrust (Pre)2%

Multiple and mutual node collusion model (MMM)
B=0.2 B=0.6

eBay 8% eBay 17%
EigenTrust 19%EigenTrust 21%
EigenTrust (Pre) 21%EigenTrust (Pre) 24%
eBay+SocialTrust 2% eBay+SocialTrust 2%
EigenTrust+SocialTrust 3% EigenTrust+SocialTrust 3%
EigenTrust+SocialTrust (Pre)4% EigenTrust+SocialTrust (Pre)3%

Third, in EigenTrust and eBay in all collusion models,
the percent of requests sent to colluders when pretrusted
nodes are involved in collusion is higher than when
they are not involved in collusion in most cases. This
is because the pretrusted nodes increase the reputation
values of colluders, which subsequently attract more ser-
vice requests. Finally, we see that SocialTrust reduces the
percent of requests sent to colluders to 2%−4% in differ-
ent systems and collusion models, even when pretrusted
nodes are involved in the collusion. By considering the
social closeness and interest similarity, SocialTrust ad-
justs the ratings between the suspected colluders. Then,
these nodes receive low reputations and fewer service
requests, which discourages the collusion behaviors.

6 CONCLUSION
Despite the effectiveness of reputation systems in finding
deceptive peers according to the reputation values, they
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are vulnerable to collusion. Although many reputation
systems try to reduce the influence of collusion on repu-
tation values, they are not sufficiently effective in coun-
tering collusion. After examining the Overstock transac-
tion trace of reputation ratings, we identified suspicious
collusion behavior patterns. According to the behavior
patterns, we propose the SocicalTrust mechanism that
leverages a social network to combat collusion. Exper-
iment results show SocicalTrust greatly enhances the
capability of eBay’s reputation system and EigenTrust
in countering collusion. SocicalTrust can even detect col-
luders with compromised pretrusted high-reputed nodes
and falsified social information. In our future work, we
will further investigate other collusion patterns, security
issues and attack models in the SocialTrust design.
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