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Abstract—The cloud networks use switches to transfer inbound
and outbound traffic through the data centers. Access of multiple
tenants to the limited bandwidth capacity over the network
switches increases the data traffic congestion in the network. The
highly congested switches are vulnerable to get overloaded, and
consequently slow down the flow of data traffic in the network.
This paper proposes a nonlinear pricing policy for on-demand
bandwidth allocation that jointly maximizes the total satisfaction
of tenants and minimizes the congestion in the core switches. The
optimal schedule is found through the best response strategy, in
which each tenant updates its bandwidth allocation at each step
based on the updated load-dependent predetermined nonlinear
bandwidth pricing functions. The updated bandwidth allocations
converge to the optimal bandwidth schedule that balances the
load over the core switches. The performance of proposed pricing
policy is evaluated under different scenarios.

I. INTRODUCTION

Cloud computing is getting more popular on providing
web services and delivery platform for IT infrastructures.
Cloud computing refers to the on-demand delivery of IT
infrastructures and applications via the internet based on pay-
as-you-go pricing [1]. Due to the high purchasing cost of
the servers, storage and network hardwares, and software
licenses, it is more economic for the customers to rent the
large-scale computation resources on demand from the popular
cloud providers [2]. As an example, Netflix, the world’s
leading subscription media streaming service, is running on
the Amazon web services (AWS) cloud [3].

In this paper we aim to control the congestion over the
core switches in the cloud network. The core switches not
only connect the tenants inside the data center, but they are the
gateways of the datacenter to the outside world [4]. Therefore,
it is essential to control congestion over the core switches to
have a smooth data traffic transfer between the tenants inside
and outside of the datacenter. To achieve this aim, we develop
a bandwidth allocation mechanism that guarantees the QoS
for bandwidth consumption of the tenants while minimizing
congestion over the core switches.

Resource allocation in computer networks is studied exten-
sively in the previous literature. The authors in [5], [6] and
[7] maximize the total satisfaction of the users for bandwidth
usage in a distributed network. As the problem is separable,
the authors propose a synchronous update process with linear
pricing mechanism to find the optimal solution in a decen-
tralized framework. In this paper we jointly maximize the

total satisfaction of the users and minimize the congestion in
the cloud network. In this non-separable problem scenario,
where the selfish and rational tenants do not necessarily
reveal their private information, such as utility function and
maximum bandwidth requirement, to the cloud provider, we
propose an asynchronous update process with nonlinear pric-
ing mechanism to find the optimal bandwidth schedule through
a decentralized framework.

In order to have a fair, clear and predictable bandwidth
allocation in the cloud, we consider that tenants contribute
to the routing in the cloud. In our proposed method, the cloud
provider predetermines load-dependent nonliear bandwidth
pricing policies, and only monitors and reports the updated
pricing policies to the tenants without interefering in the de-
centralized bandwidth allocation process among them. In this
scenario that tenants are able to allocate their bandwidth over
the core switches, the nonlinear pricing mechanism always
results in the load balancing over the core switches; however,
linear bandwidth pricing does not motivate the tenants to
distribute their loads over the core switches, and therefore it
does not guarantee load balancing over the core switches.

II. SYSTEM MODEL

In this paper, we focus on the bandwidth allocation among
tenants in core switches (denoted as S = {1, ..., S}). The
core switches are the root switches in a fat-tree topology of
a data center [8]. The tenants are divided in two categories
as in [9]: (i) reserved instance and (ii) on-demand instance
tenants. We consider that the reserved instance tenants do
not contribute in the bandwidth scheduling, and they are
routed through the switches based on a predetermined routing
schedule. We denote Ds as the total bandwidth of the reserved
instance tenants passing through switch s, s = 1, ..., S. We
consider a set of selfish and rational on-demand instance
tenants, K = {1, ...,K}. We define the maximum capacity
of a switch as the total capacity of its outgoing links. We
assume that all the switches have the same maximum capacity
denoted as Bmax. Let bk,s denote the amount of bandwidth
that tenant k sends through the outgoing links of switch s, and
Bs = Ds +

∑
k∈K bk,s as the total bandwidth of the outgoing

links of switch s. We define Bs

Bmax as the congestion degree
of switch s, and we define

∑
s∈S Bs

S×Bmax as the total congestion
degree over the core switches.



Fig. 1: The network topology of the tenants accessing the
bandwidth resources of the core switches in the data center

Let bk =
∑

s∈S bk,s denote the total amount of bandwidth
scheduled (reserved) by tenant k over all the core switches
in S. Let us denote bk = (bk,1, ..., bk,S) as the bandwidth
schedule (reservation) of tenant k over all switches in S.
We assume that bandwidth schedules are determined for a
specific period of time T , e.g. T = 5min, and the tenants
update their bandwidth schedule after period T . Let b =
(b1, ...,bK) denote the bandwidth schedule for the tenants in
the network, and b−k denote the bandwidth schedule for all
the tenants excluding tenant k. We assume that each tenant
k requires a maximum amount of bandwidth denoted by
bmax
k , i.e. bk ≤ bmax

k . We have bmax
k =

∑
s∈S B

max for
a tenant without maximum bandwidth requirement. Let us
denote Bk = {bk|

∑
s∈S bk,s ≤ bmax

k } as the set of all feasible
bandwidth allocation of tenant k, and denote B = B1×...×BK
as the set of all feasible bandwidth allocations for all the
tenants. The set B is compact and convex.

A feasible bandwidth schedule must satisfy each switch’s
capacity constraint:

Bs = Ds +
∑
k∈K

bk,s ≤ ηBmax, ∀s. (1)

where η ∈ [0, 1] is the safety factor determined by the cloud
provider to ensure that maximum capacity is not violated.
In the next section, we formulate the bandwidth allocation
problem, and introduce the social welfare and tenant’s utility.

III. PROBLEM FORMULATION

In this section, we formulate the problem to find the optimal
bandwidth schedule that satisfies tenants’ demands as much
as possible and avoids congestion in the switches. To achieve
this objective, the cloud provider specifies a nonlinear pricing
policy that increases the unit price as the bandwidth usage
increases. This disincentivizes the tenants to use bandwidth
when the bandwidth usage (Bs) is high (i.e., the link is more
likely to be congested). Therefore, the cloud provider uses a
strictly convex function, denoted as V(·), as the bandwidth
payment function over a core switch.

Let Uk(
∑

s∈S bk,s) deote the satisfaction function of tenant
k for bandwidth schedule bk. The satisfaction function, Uk(·),
is considered to be non-decreasing as a higher bandwidth
provision makes a tenant more satisfied. Also, the marginal
satisfaction of a user is non-increasing because a tenant’s level
of satisfaction gradually gets saturated when the provisioned
bandwidth increases [10]–[12]. Thus, we consider that Uk(·)
is strictly increasing and strictly concave, and its second
derivative is continuous in Bk. The cloud provider needs to

TABLE I: Notations and definitions

Notation Definition
K the set of tenants
S the set of switches
Ds the total bandwidth of the reserved instance tenants passing

through switch s
bk,s the amount of bandwidth that tenant k sends through the outgoing

links of switch s
bk =∑

s∈S bk,s

the total amount of bandwidth scheduled (reserved) by tenant k
over all the core switches

Bmax the maximum capacity of switches
Bs the bandwidth usage of switch s
Uk(·) the satisfaction function of tenant k for bandwidth schedule bk

V(·) the bandwidth payment function over a core switch

provide bandwidth to meet the tenants’ satisfaction and un-
congested network support for all the tenants. Since these
two factors affect the QoS to the tenants’ applications, which
represents their welfare, we define social welfare of tenants as
a joint consideration of these two factors in the following:

Sw(b) =
K∑

k=1

Uk(
∑
s∈S

bk,s)−
∑
s∈S

(V (Bs)− V (Ds))

s.t. Bs − ηBmax ≤ 0, ∀s.
b ∈ B. (2)

The fixed term V(Ds), ∀s, is added to make the social welfare
an unbiased function with respect to b, i.e. Sw(0) = 0.
When the total bandwidth demands Bs > ηBmax, switch s
is considered as overloaded. We denote C(x) as the overload
cost function associated with switch s. As the overload cost
function needs to increase more at higher bandwidth usage to
penaltize tenants more at overloading, we define C(x) as a
strictly convex function with C(x) = 0 for x < 0 [13].

Let us define Z(x) .
= V (x) − V (Ds) + C (x− ηBmax)

as the total congestion and overload cost of the bandwidth
reservation b on each switch s. As V(·) and C(·) are strictly
convex functions, Z(·) is also a strictly convex function.
As Uk(·) is strictly concave for each tenant k, and Z(·) is
strictly convex, W(·) is a strictly concave function in B. By
transferring the maximum capacity constraint as the overload
cost function, the social welfare of the tenants in (2) is
rewritten as in the following:

W(b) =

K∑
k=1

Uk(
∑
s∈S

bk,s)−
∑
s∈S

(V (Bs)− V (Ds))

−
∑
s∈S
C (Bs − ηBmax)

.
=

K∑
k=1

Uk(bk)−
∑
s∈S
Z (Bs) ,

b ∈ B. (3)

We define the socially optimal bandwidth schedule as a
feasible bandwidth schedule that maximizes the social welfare
of the tenants as in (3). In order to incentivize tenants to avoid
congestion in the switches, the cloud provider determines a
pricing policy that charges each tenant a fee based on its
scheduled bandwidth over the switches.



IV. PROPOSED BANDWIDTH PRICING POLICY

In this section, we propose the bandwidth pricing policy to
transfer the congestion and overload cost of the cloud provider
to the tenants. Let us define
Yk,s(b,b−k) = Z

(
Ds +

∑
j∈K/{k} bj,s + bk,s

)
as the con-

gestion and overload cost that tenant k impose on the core
switch s with its reserved bandwidth schedule bk,s while the
other tenants have scheduled b−k bandwidth schedule. We
derive the bandwidth payment function ξk(b−k,bk) for tenant
k to pay for bandwidth schedule bk over the core switches in
S, as in the following:

ξk(b−k,bk) =
∑
s∈S

[Yk,s (b−k,bk)− Yk,s (b−k,0)] . (4)

We have added the terms, Yk,s(b−k,0), to achieve an
unbiased cost function for the tenants, i.e. ξk(b−k,0) = 0, ∀k.
The utility function of tenant k, Fk(bk,b−k), for scheduling
bk is calculated as in the following:

Fk (b−k,bk) = Uk

(∑
s

bk,s

)
− ξk (b−k,bk) . (5)

Let us define [x]+ = min{0, x}. The following Lemma shows
that each tenant k balances the total load over the core switches
in order to maximize its own utility.

Lemma 1. For the total bandwidth allocation of b̂k ∈
[0, bmax

k ], there exist a unique constant level λ∗(b̂k) > 0,
such that the utility maximizing bandwidth schedule b̂k(bk) :∑

s∈S b̂(k,s) = b̂k, is uniquely derived as in the following:

b̂k,s(bk) = [λ∗(bk)− (Ds +
∑

j∈K/{k}

bj,s)]
+, ∀s ∈ S. (6)

V. BEST RESPONSE UPDATE PROCESS

In this section, we find the socially optimal bandwidth
schedule through a distributed update process. We consider
selfish and rational tenants that do not necessarily reveal
their private information, such as satisfaction function, Uk(·),
and bmax

k , to the cloud provider. Without knowing these
information, the cloud provider is not able to find the socially
optimal bandwidth schedule in a centralized manner. To find
the optimal bandwidth schedule, we propose a decentralized
bandwidth allocation framework, in which the cloud provider
uses an asynchronous-based best response strategy process
[14] to allocate the bandwidth for the tenants.

Let bm denote the updated bandwidth schedules of the
tenants over the core switches at iteration step m. The cloud
provider reports the updated bandwidth payment function of
tenant k at step m + 1, as ξm+1

k (bm
k ,bk), ∀k ∈ K. Tenant

k updates its bandwidth schedule, bm+1
k , to maximize its

individual utility:

bm+1
k = arg max

bk∈Bk

Fk(b
m
−k,bk) (7)

The optimal bandwidth schedule in (7) is calculated based on
its load balancing property in Lemma 1.
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Fig. 2: Total load for (a) on-demand and (b) reserved instance
tenants over the core switches.

For convergence of the best response strategy, each tenant
must updates its bandwidth, at least once, in a limited number
of N+K successive updates. After N updates, if a tenant fails
to update its bandwidth allocation, the cloud provider requests
for its bandwidth update. If the tenant does not respond to the
cloud provider’s request, the cloud provider will drop it out
of the update process.

From the strictly concavity of the social welfare function
and the utility functions of the tenants, the proposed best re-
sponse strategy update process converges to a socially optimal
bandwidth schedule.

Theorem 1. The best response update process converges to a
socially optimal bandwidth schedule.

VI. NUMERICAL RESULTS

In this section, we evaluate and verify the performance
of our proposed pricing policy for the on-demand bandwidth
allocation in the cloud network through the simulation results.
We consider a cloud network with S = 10 core switches each
with the maximum bandwidth capacity of Bmax = 40Gbps.
We assign the utility function Uk = log(1+bk) for consuming
bk amount of bandwidth for tenant k. The cloud provider sets
the bandwidth cost for each tenant to minimize the congestion
cost over the core switches. We consider the nonlinear pricing
policy V(x) = β(1 + x

Bmax )
2 to determine the bandwidth

payment function for the tenants. We assume that the total
load for reserved instance customers, Ds, s = 1, ..., 10, is
reserved over the core switches.

Figure 2 shows the total reserved bandwidth for reserved
and on-demand instance tenants. The simulation is resulted
from running the best response strategy for 10000 number
of updates with K = 40 homogeneous on-demand instance
tenants. We have set the congestion cost factor β = 0.36 to
achieve 80 percent congestion degree over the core switches.
We have assumed that the Reserved instance tenants band-
width schedule, Ds, is predetermined as shown in Fig. 2.
The On-demand instance tenants compete for the remaining
bandwidth over the switches. This has resulted in the balanced
load over the core switches as mentioned in Lemma 1.

In order to encourage tenants to demand more bandwidth
over the core switches, the cloud provider decreases the
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Fig. 3: The variations of the congestion cost factor (β) to
achieve the total desired congestion degree over the core
switches for K = 10, 20 and 40 number of the tenants.
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Fig. 4: The social welfare of the on-demand instance tenants vs
total congestion degree over the core switches for K = 10, 20
and 40 number of the tenants.

congstion cost factor β. Decreasing the congestion cost factor
(β) decreases the bandwidth payment cost of the tenants, and
consequently increases the total bandwidth consumption and
the total congestion degree over the core switches that is
defined as Cd =

∑
s∈S Bs

S×Bmax . Figure 3 shows how the cloud
provider decreases the cost factor (β) in order to achieve its
desired congestion degree over the core switches.

Figure 4 demonstrates the social welfare of the tenants
increases as the cloud provider decreases the cost factor β to
achieve the desired congestion degree over the core switches.
This is mainly due to the fact that decreasing the congestion
cost factor β decreases the bandwidth payment cost for the
tenants, and consequently increases users’ satisfaction. Figure
4 also shows that for a fixed congestion degree, the social
welfare of the tenants increases due to decrease of the cost
factor β and increase of the total satisfaction of the tenants.

Figure 5 shows the convergence ratio of the total bandwidth
of the tenants as the bandwidth update steps increases. As this
figure shows, we achieve a convergence ratio less than of 10−3

for K = 10, 20 and 40 number of tenants with running the
best response strategy for M = 60, 130 and 265 number of
bandwidth updates. This figure shows that the convergence
ratio reduces through a exponentially decaying function as
the number of bandwidth updates increases. Furthermore, the

Fig. 5: The convergence ratio of the total bandwidth of the
tenants vs bandwidth update steps for K = 10, 20 and 40
number of the tenants.

number of bandwidth updates to achieve the convergence ratio
of 10−3 increases proportional to the number of the tenants
updating their bandwidth schedules.

VII. CONCLUDING REMARKS

In this paper we proposed load-dependent bandwidth pricing
for congestion control over the core switches in the cloud
networks. The aim of the paper is to maximize the total
satisfaction functions of the tenants while avoiding the con-
gestion and overloading over the core switches. We utilized a
nonlinear pricing mechanism that results in a load-balancing
bandwidth schedule over the switches. In order to find the
optimal solution, we performed a decentralized best response
strategy with asynchronous update process. We verified our
results with numerical simulations for different number of the
tenants.
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